Silicon Radiation Damage and Expected Run II Lifetimes

S. Worm University of New Mexico

June 14, 2000

Overview

- Intro
- Silicon
 - 1. Leakage Current
 - 2. Depletion Voltage
- Data acquisition
 - 1. SVX3
 - 2. Port cards
- Summary

Radiation concerns for Run IIa silicon

- Degradation of Signal/Noise
 - 1. Full signal collection may be difficult after high dose (depletion).
 - 2. Noise from increased leakage currents.
- Component Robustness
 - 1. Silicon sensors a concern for L00, SVXII, and D0 90°
 - 2. Readout electronics (inner: SVX3 chip, hybrids) possible concern for L00?
 - 3. Readout electronics (outer: port cards, DOIMs, etc) next talk
 - 4. Single event upset Not a problem with 0.8 μ m process.

This talk will cover only recent estimates of depletion voltages and currents.

The oft-quoted numbers (from CDF3408) are a dose of $0.5~\rm Mrad/fb^{-1}$. This is based on leakage current measurements during Run 1a and is conservative. Is this still correct?

Leakage Current Estimates

For the innermost layer of SVX and SVX' ($r \approx 3.0$ cm) leakage vs strip was found to be

$$I^{SVX} = 0.80 \ nA/strip/pb^{-1}$$
 (1)

$$I^{SVX} = 0.80 \ nA/strip/pb^{-1}$$
 (1)
 $I^{SVX'} = 0.63 \ nA/strip/pb^{-1}$ (2)

at 24 \pm 2 °C and with a radial dependence proportional to $r^{-1.68}$, where pb^{-1} refers to delivered luminosity [CDF3937].

From an average of the equations above and converting to $T = 15^{\circ}C$, r = 2.54 cm and strip volume to 2.79×10^{-3} cm³:

$$I_{L0}^{15^{\circ}C} = I_{3.0cm}^{24^{\circ}C} \left[\frac{2.79 \times 10^{-3} \ cm^{3}}{4.59 \times 10^{-3} \ cm^{3}} \right] \left[\frac{1}{2.265} \right] \left[\frac{2.54 \ cm}{3.00 \ cm} \right]^{-1.68}$$

$$= 0.25 \ nA/strip/pb^{-1}$$
(4)

For L00 we use $T = 5^{\circ}C$, r = 1.35 cm and strip volume to $1.13 \times 10^{-3} \text{ cm}^3$:

$$I_{L00}^{5^{\circ}C} = I_{3.0cm}^{24^{\circ}C} \left[\frac{1.13 \times 10^{-3} \ cm^{3}}{4.59 \times 10^{-3} \ cm^{3}} \right] \left[\frac{1}{5.963} \right] \left[\frac{1.35 \ cm}{3.00 \ cm} \right]^{-1.68}$$

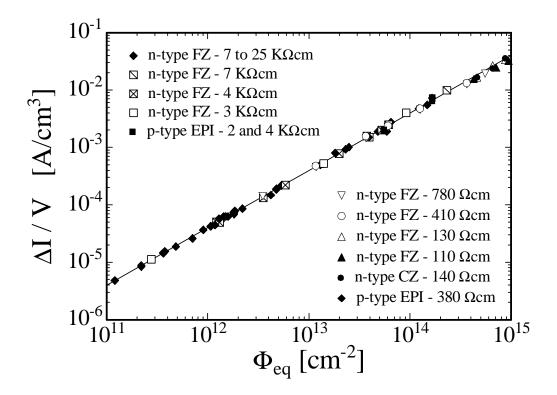
$$= 0.11 \ nA/strip/pb^{-1}$$
(6)

To find the fluence (in terms of 1 MeV neutron equivalent dose) we use the relation for current (at 20°C) and I_{strip} = $I_0 + \alpha \times \Phi \times Vol_{strip}$. Following CDF3937 we chose $\alpha_{\text{effective}} =$ $1.1 \times \alpha_{\infty} = 4.4 \times 10^{-17} A/cm$.

$$\Phi_{L0}^{1MeVn} = \frac{(0.25 \times 1.58) \ nA/strip/pb^{-1}}{\alpha_{\text{effective}} \cdot 2.79 \times 10^{-3} (cm^3/strip)}$$
(7)

$$= 0.32 \times 10^{13} (1 MeV n) / cm^2 / fb^{-1}$$
 (8)

Comparison to previous estimates


• This compares very favorably with previous (design) estimates.

Using the average of Run Ia and Ib (the previous page):
$$\Phi_{L0} = 0.32 \times 10^{13} cm^{-2}/fb^{-1} \qquad (9)$$

Numbers from CDF3408 (the ones everyone remembers):

$$\Phi_{L0} = 0.75 \times 10^{13} cm^{-2} / fb^{-1} \tag{10}$$

- Why the change?
 - 1. Best (rather than conservative) estimate.
 - 2. Larger damage constant α_{∞} .

Is a good V_{dep} model really important?

- For L00, *no*
 - 1. Deterioration of charge collection efficiency should not cause problems at Tevatron fluences.
 - 2. Not a serious design or operational limitation.
- For SVXII, yes
 - 1. Double sided AC coupled silicon with 100V integrated capacitors; 200V max.
 - 2. Voltage drop across filter and biasing resistors should not be large.
 - 3. Microdischarge problems begin to occur above 170V.
- For D0 90°, *yes*
 - 1. Double sided AC coupled silicon with 100V integrated capacitors; 200V max.
 - 2. Moderate voltage drop, but higher voltage power supplies (so not a problem).
 - 3. Microdischarge problems with split biasing; 100V+30V.

Depletion Voltage Prediction

Test beam studies limit the fluence to about $7 \times 10^{13} (1 MeV n)/cm^2$.

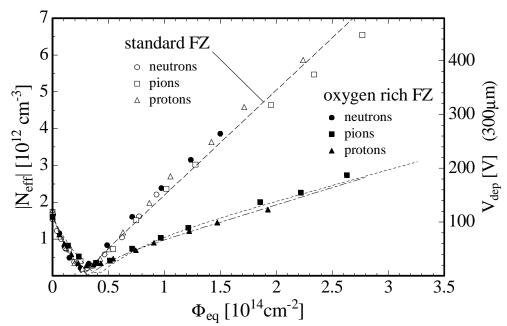


Figure 9: Dependence of $N_{\rm eff}$ on the accumulated 1 MeV neutron equivalent fluence for standard and oxygen enriched FZ silicon irradiated with reactor neutrons (Ljubljana), 23 GeV protons (CERN PS) and 192 MeV pions (PSI).

Depletion Voltage Prediction

The depletion voltage in a planar diode is given by

$$V_{planar} \propto d^2 \cdot |N_{eff}| \tag{11}$$

where N_{eff} is the effective doping concentration, and

$$\Delta N_{eff}(\Phi, t, T) \approx N_C(\Phi) + N_v(\Phi, t, T). \tag{12}$$

This equation can be broken up into a stable defect portion and a reverse annealing portion as follows;

$$N_C(\Phi) = N_{C0}(1 - e^{-c\Phi}) + g_C \tag{13}$$

$$N_Y(\Phi, t, T) = N_{X0}(\Phi)(1 - \frac{1}{1 + N_{X0}(\Phi)k_0e^{-E_a/k_BT}t})$$
 (14)

(for example A.Chilingarov et al, NIM A360 432-437). Now for strip sensors,

$$V_{depletion} = V_{planar}(1 + 2\frac{p}{d}f(w/p)) \tag{15}$$

To predict the depletion voltage as a function of dose, we need to measure N_{C0} for Hamamatsu silicon.

Depletion Voltage Modeling (continued)

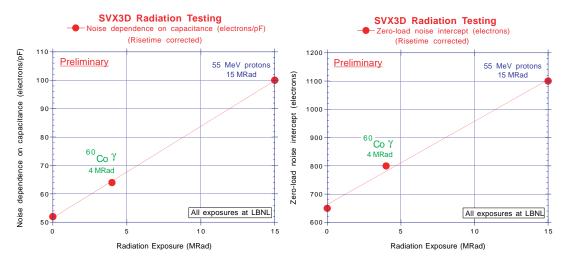
- Model includes both the short term beneficial annealing and the long term reverse annealing.
- Model also includes an estimate of the 'overvoltage' required (from NIM A 342 (1994) 90). This is typically a small effect.
- Damage constants used are listed in the table below. They are averages of several measurements compiled by Feick (in his dissertation).

Parameter		Neutrons	Protons	Pions			
$\overline{g_Y}$	(10^{-2}cm^{-1})	4.6±0.3	5.80±0.3	8.1±0.5			
g_C	$(10^{-2} { m cm}^{-1})$	1.77 ± 0.07	1.15 ± 0.09	2.01 ± 0.05			
N_{C0}	$(10^{11} cm^{-3})$	2.0	6.3	3.9			
c	(10^{-13}cm^2)	2.29 ± 0.63	0.96 ± 0.19	1.64 ± 0.29			
E_a	(eV)		1.31 ± 0.04				
k_{O}	$(cm^3 s^{-1})$	520 (128 to 2110)					
$lpha_{\infty}$	(10 ⁻¹⁷ cm ²)	2.86 ± 0.18	2.22 ± 0.10	3.89 ± 0.20			

- g_Y , g_C , and N_{C0} These parameters determine the variation of N_{eff} as a function of fluence (1 MeV neutron equivalent dose).
- c the 'donar removal' constant
- \bullet E_a activation energy
- k_0 frequency factor
- \bullet α_{∞} reverse current normalized to the fluence

Parameters used the V_{dep} model

Parameter	L00	LO	L1	L2	D90
n width (μm)	50	30	20	15	22
n pitch (μm)	50	141	125.5	60	153.5
p width (μm)	8	14	14	15	17
p pitch (μm)	25	60	62	60	50
V_{dep} initial (\acute{V})	70	65	65	25	30
temperature (C)	5	15	15	15	10


A scaling of the fluence is conduced $(r^{-1.68})$ in the plots below to account for the increased dose in the inner layers. The horizontal axis corresponds to 1.0×10^{13} particles (protons, pions) per cm².

L00 =
$$(2.54/1.35)^{1.68}$$
 = 2.75
L0 = $(2.54/2.54)^{1.68}$ = 1.00
L1 = $(2.54/4.12)^{1.68}$ = 0.44
L2 = $(2.54/6.52)^{1.68}$ = 0.21
D90 = $(2.54/2.70)^{1.68}$ = 0.90

Plots assume 1.0×10^{13} dose per year on L0, and the dose for other layers is scaled as shown above.

SVX3 chip rad damage measurements

Next talk, but...

Assuming an effective charge collection of 20,000 electrons, we can estimate the signal/noise versus fluence from the plots above:

• At 4 MRad (same as ⁶⁰Co study):

$$noise = 64e/pF \times 20pF + 780e$$

$$= 2060e$$

$$signal/noise = 10$$
(16)

At 8 MRad:

$$noise = 78e/pF \times 20pF + 900e$$

$$= 2460e$$

$$signal/noise = 8$$
(17)

At 12 MRad:

$$noise = 90e/pF \times 20pF + 1000e$$

$$= 2800e$$

$$signal/noise = 7$$
 (18)

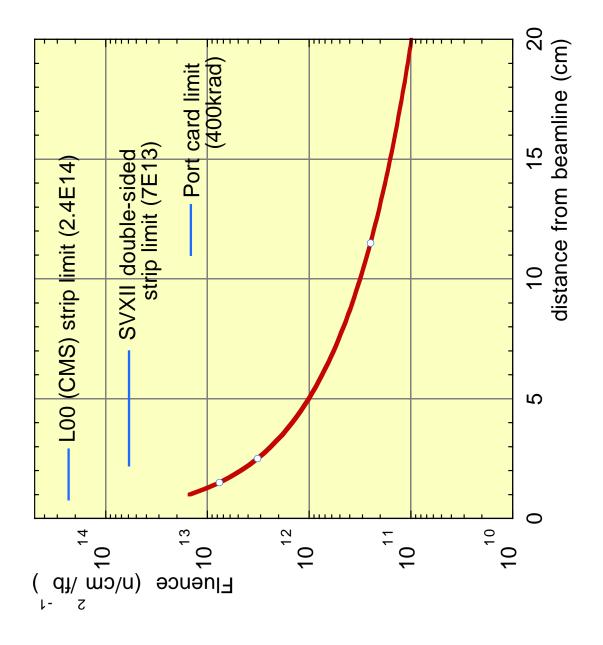
Chip is operable at high fluence, but signal/noise is bad.

Port card radiation damage estimates

Next talk, but...

Assuming that the port card will have troubles at 400 krad, we can get a rough idea of the comparison between port card and sensor damages by just...

$$400krad imes rac{3.75 imes 10^{13}}{1Mrad} ~~pprox ~~ 1.5 imes 10^{13} n/cm^2/fb^{-1}$$


How do you compare NIEL to charged rad damage?

Can either do a full simulation of the backgrounds, or you can pick a few specific particle types and energies, or...

CDF3937 has an independent estimate from the ratio of the elastic and low mass diffractive cross sections (evaluated at r=1cm):

$$\frac{\Phi_{1MeVn}^{CDF}}{\Phi_{charged\ rad\ damage}^{CDF}} \approx 0.62 \pm 0.19 \tag{19}$$

This functions as an 'average' hardness factor and allows us to compare accumulated damage on the same timescales...

Conclusion

This result implies a longer lifetime for the silicon. The ratio of radiation dose on the silicon and luminosity had been overestimated.

But now some mismatches exist...

- ullet our capabilities do not match our stated Run IIa goal of $> 4 \mbox{fb}^{-1}$,
- we do not match well with D0, which will die sooner, and
- neither experiment matches the goals of the lab (2 fb^{-1} in 2 years).